página inicialSÓLIDO RÍGIDOproblemas itas

  1. problema nº 1Dos poleas del mismo eje y radios 50 y 80 cm están unidas formando una poleade momento deinercia I=72 Kg.·m2. De los hilos, de masa despreciable, penden dos masas de 100 y 50 Kg., dejándose libre el sistema en la posición de la figura. Hallar la velocidad del cuerpo de 100 Kg. al llegar al suelo y la altura total recorrida por el cuerpo de 50 Kg. hasta llegar que se para. Verificar si se conserva la energía mecánica del sistema.

 

  1. problema nº 22. La figura representa dos poleas acopladas de momento de inercia I = 200 Kg.·m2. Los radios son R1 = 10 cm, R2 = 20 cm. Calcular la diferencia de tensiones en las cuerdas horizontales cuando el bloque de 500 Kg.:

    a)     sube a velocidad constante

    b)     Baja con aceleración de 0,2 m/s2 (tomar g = 9,8 m/s2)





  2. problema nº 3 La barra de la figura, de masa M y longitud L está sujeta inicialmente a un hilo y a un soporte en C. Se rompe el hilo. Hallar en ese instante:

  3. a) aceleración del punto B

    b) Fuerzas en C


    1. problema nº 4Una varilla homogénea de longitud L y una masa M se deja en libertad partiendo del reposo cuando b = 60º. Suponiendo que el rozamiento entre elextremo y el suelo es lo suficientemente grande para evitar todo deslizamiento calcular:

    a) aceleración angular de la varilla en el instante de soltarla.

    b) Reacción perpendicular y paralela y paralela al suelo en el punto de contacto de la barra con el suelo en dicho instante.

  4. problema nº 5 Un carrete de radio interior r y exterior R está situado sobre una superficie plana. Se tira del carrete con una fuerza F que forma un ángulo j con la horizontal haciendo que ruede sin deslizar. Hallar el valor del ángulo j0 para el cual el carrete gira a izquierdas.


  1. problema nº 6 Hacer un estudio del valor de la fuerza de rozamiento en función del punto de aplicación de la fuerza F, para el cilindro de la figura de masa m y radio r, si la fuerza aplicada es paralela al suelo y de sentido el de la figura y el sistema rueda sin deslizar.


  1. problema nº 7 Una varilla de longitud L y masa M puede rotar libremente alrededor de un pivote A. Una bala de masa m y velocidad v golpea a la varilla a una distancia a del punto A y se incrusta.

    a)     Hallar la velocidad angular del sistema inmediatamente después de que la bala golpee a la varilla.

  2. b)     Bajo que condiciones se conserva el momento lineal durante el choque.


  3. problema nº 8Una masa de 1 Kg. cuelga del extremo de una cuerda sin masa, que pasa por una polea si rozamiento y después se acopla a un cilindro de masa 8 Kg. y radio 10 cm que rueda sin deslizar. Hallar la aceleración del cuerpo que cuelga, la tensión de la cuerda y la aceleración angular del cilindro.



  1. problema nº 9Sobre un plano horizontal, sin rozamiento, se produce el choque que indica la figura. La bola, de masa M y velocidad v0, queda adherida en el extremo de la varilla. La varilla tiene longitud L y masa M. Describir el movimiento del sistema después del choque.




  1. problema nº 10La esfera de la figura, de radio R0 = R/10, y masa m rueda sin deslizar sobre la superficie esférica. Si se suelta en el instante representado en la figura, hallar la velocidad del centro de masas de la misma en A.



  1. problema nº 11 Una varilla de 2 m de longitud está formado por dos materiales, de modo que una mitad pesa 1 Kg. y la otra 2 Kg. Se suspende de un eje que pasa por uno de sus extremos y se deja libre. Hallar la velocidad w en su punto más bajo dependiendo de que el eje esté en uno u otro extremo.

página inicialproblemas itas