

- 1. Ejercicios de repaso: límites de funciones cuando $oldsymbol{x} ightarrow oldsymbol{ ext{ iny }} oldsymbol{ ext{ iny }}$

Soluciones

Calcula los siguientes límites y representa la información que obtengas:

a)
$$\lim_{x \to +\infty} (7 + x - x^3)$$

$$\lim_{x\to-\infty}(7+x-x^3)$$

b)
$$\lim_{x \to +\infty} \frac{x^2 - 10x - 32}{5}$$
 $\lim_{x \to -\infty} \frac{x^2 - 10x - 32}{5}$

$$\lim_{x \to -\infty} \frac{x^2 - 10x - 32}{5}$$

c)
$$\lim_{x \to +\infty} \left(-\frac{x^4}{3} + \frac{x}{2} - 17 \right)$$
 $\lim_{x \to -\infty} \left(-\frac{x^4}{3} + \frac{x}{2} - 17 \right)$

$$\lim_{x \to -\infty} \left(-\frac{x^4}{3} + \frac{x}{2} - 17 \right)$$

d)
$$\lim_{x \to +\infty} (7-x)^2$$

$$\lim_{x\to-\infty}(7-x)^2$$

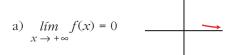
Resolución

a)
$$\lim_{x \to +\infty} (7 + x - x^3) = -\infty$$
; $\lim_{x \to -\infty} (7 + x - x^3) = +\infty$

b)
$$\lim_{x \to \pm \infty} \frac{x^2 - 10x - 32}{5} = +\infty$$

c)
$$\lim_{x \to \pm \infty} \left(\frac{-x^4}{3} + \frac{x}{2} - 17 \right) = -\infty$$

d)
$$\lim_{x \to \pm \infty} (7 - x)^2 = +\infty$$


2 Comprueba, dando valores grandes a x, que las siguientes funciones tienden a 0 cuando $x \to +\infty$.

$$a)f(x) = \frac{1}{x^2 - 10}$$

b)
$$f(x) = \frac{100}{3x^2}$$

c)
$$f(x) = \frac{-7}{\sqrt{x}}$$

d)
$$f(x) = \frac{2}{10x^2 - x^3}$$

b)
$$\lim_{x \to +\infty} f(x) = 0$$

c)
$$\lim_{x \to +\infty} f(x) = 0$$

d)
$$\lim_{x \to +\infty} f(x) = 0$$

· 1. Ejercicios de repaso: límites de funciones cuando $oldsymbol{x} ightarrow oldsymbol{ ext{t}} \infty$ ——

Soluciones

Calcula el límite cuando $x \to +\infty$ y cuando $x \to -\infty$ de cada una de las siguientes funciones. Representa los resultados que obtengas:

$$a) f(x) = x^3 - 10x$$

b)
$$f(x) = \sqrt{x^2 - 4}$$

b)
$$f(x) = \sqrt{x^2 - 4}$$
 c) $f(x) = \frac{3 - x}{2}$

d)
$$f(x) = \frac{x^2 - 2x}{-3}$$

Resolución

Cuando $x \to +\infty$:

a)
$$\lim_{x \to +\infty} f(x) = +\infty$$

b)
$$\lim_{x \to +\infty} f(x) = +\infty$$

c)
$$\lim_{x \to +\infty} f(x) = -\infty$$

d)
$$\lim_{x \to +\infty} f(x) = -\infty$$

Cuando $x \to -\infty$:

a)
$$\lim_{x \to -\infty} f(x) = -\infty$$

b)
$$\lim_{x \to -\infty} f(x) = +\infty$$

c)
$$\lim_{x \to -\infty} f(x) = +\infty$$

d)
$$\lim_{x \to -\infty} f(x) = -\infty$$

Calcula los siguientes límites y representa las ramas que obtengas:

a)
$$\lim_{x \to +\infty} \frac{3}{(x-1)^2}$$
 $\lim_{x \to -\infty} \frac{3}{(x-1)^2}$

$$\lim_{x\to-\infty}\frac{3}{(x-1)^2}$$

b)
$$\lim_{x \to +\infty} \frac{-2x^2}{3-x}$$
 $\lim_{x \to -\infty} \frac{-2x^2}{3-x}$

$$\lim_{x \to -\infty} \frac{-2x^2}{3-x}$$

c)
$$\lim_{x \to +\infty} \frac{-1}{x^2 - 1}$$
 $\lim_{x \to -\infty} \frac{-1}{x^2 - 1}$

$$\lim_{x\to-\infty}\frac{-1}{x^2-1}$$

d)
$$\lim_{x\to+\infty}\frac{1}{(2-x)^3}$$

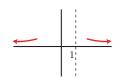
$$\lim_{x\to-\infty}\frac{1}{(2-x)^3}$$

e)
$$\lim_{x \to +\infty} \frac{2x-1}{x+2}$$

$$\lim_{x \to -\infty} \frac{2x-1}{x+2}$$

f)
$$\lim_{x \to +\infty} \frac{x^2 + 5}{1 - x}$$

$$\lim_{x \to -\infty} \frac{x^2 + 5}{1 - x}$$

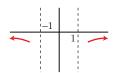

g)
$$\lim_{x \to +\infty} \frac{2-3x}{x+3}$$
 $\lim_{x \to -\infty} \frac{2-3x}{x+3}$

$$\lim_{x \to -\infty} \frac{2-3x}{x+3}$$

h)
$$\lim_{x \to +\infty} \frac{3-2x}{5-2x}$$
 $\lim_{x \to -\infty} \frac{3-2x}{5-2x}$

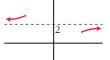
$$\lim_{x \to -\infty} \frac{3-2x}{5-2x}$$

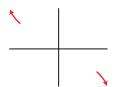
a)
$$\lim_{x \to +\infty} \frac{3}{(x-1)^2} = 0$$
; $\lim_{x \to -\infty} \frac{3}{(x-1)^2} = 0$

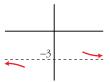

– 1. Ejercicios de repaso: límites de funciones cuando $extbf{ extit{x}} ightarrow extbf{ extit{t}} ext{ extit{x}} = extbf{ extit{t}}$

Soluciones

b)
$$\lim_{x \to +\infty} \frac{-2x^2}{3-x} = +\infty; \quad \lim_{x \to -\infty} \frac{-2x^2}{3-x} = -\infty$$


c)
$$\lim_{x \to +\infty} \frac{-1}{x^2 - 1} = 0; \lim_{x \to -\infty} \frac{-1}{x^2 - 1} = 0$$


d)
$$\lim_{x \to +\infty} \frac{1}{(2-x)^3} = 0$$
; $\lim_{x \to -\infty} \frac{1}{(2-x)^3} = 0$


e)
$$\lim_{x \to +\infty} \frac{2x-1}{x+2} = 2$$
; $\lim_{x \to -\infty} \frac{2x-1}{x+2} = 2$

f)
$$\lim_{x \to +\infty} \frac{x^2 + 5}{1 - x} = -\infty$$
; $\lim_{x \to -\infty} \frac{x^2 + 5}{1 - x} = +\infty$

g)
$$\lim_{x \to +\infty} \frac{2-3x}{x+3} = -3$$
; $\lim_{x \to -\infty} \frac{2-3x}{x+3} = -3$

h)
$$\lim_{x \to +\infty} \frac{3-2x}{5-2x} = 1$$
; $\lim_{x \to -\infty} \frac{3-2x}{5-2x} = 1$

Resuelve los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{3x^2}{(x-1)^2}$$
 b) $\lim_{x \to -\infty} 1 - (x-2)^2$ c) $\lim_{x \to +\infty} \frac{1-x}{(2x+1)^2}$ d) $\lim_{x \to -\infty} \frac{x^3+1}{5x}$

b)
$$\lim_{x \to -\infty} 1 - (x-2)^2$$

c)
$$\lim_{x \to +\infty} \frac{1-x}{(2x+1)^2}$$

d)
$$\lim_{x \to -\infty} \frac{x^3 + 1}{5x}$$

a)
$$\lim_{x \to +\infty} \frac{3x^2}{(x-1)^2} = 3$$

b)
$$\lim_{x \to -\infty} 1 - (x - 2)^2 = -\infty$$

c)
$$\lim_{x \to +\infty} \frac{1-x}{(2x+1)^2} = 0$$

a)
$$\lim_{x \to +\infty} \frac{3x^2}{(x-1)^2} = 3$$
 b) $\lim_{x \to -\infty} 1 - (x-2)^2 = -\infty$ c) $\lim_{x \to +\infty} \frac{1-x}{(2x+1)^2} = 0$ d) $\lim_{x \to -\infty} \frac{x^3+1}{5x} = +\infty$

1. Ejercicios de repaso: límites de funciones cuando $x o \pm \infty$ —

Soluciones

Calcula el límite cuando $x \to +\infty$ y cuando $x \to -\infty$ de las siguientes funciones y representa las ramas que obtengas:

$$a) f(x) = \frac{-1}{x^2}$$

$$\mathbf{b)}\,f(x) = 10x - x^3$$

b)
$$f(x) = 10x - x^3$$
 c) $f(x) = \frac{x^2}{x - 1}$

d)
$$f(x) = \frac{1 - 12x^2}{3x^2}$$

a)
$$\lim_{x \to +\infty} f(x) = 0$$
; $\lim_{x \to -\infty} f(x) = 0$

b)
$$\lim_{x \to +\infty} f(x) = -\infty$$
; $\lim_{x \to -\infty} f(x) = +\infty$

c)
$$\lim_{x \to +\infty} f(x) = +\infty$$
; $\lim_{x \to -\infty} f(x) = -\infty$

d)
$$\lim_{x \to +\infty} f(x) = -4$$
; $\lim_{x \to -\infty} f(x) = -4$

