Un piano gigantesco

 

Sabemos que al pulsar las teclas blancas de un piano se reproducen periódicamente las siete notas de la escala musical Do, Re, Mi, Fa, Sol, La y Si. Por lo tanto aunque el piano tenga muchas teclas, solamente podemos escuchar las siete notas de la escala, eso sí, en diversas octavas. Los pianos reales tienen un número limitado de teclas, pero para nuestro problema vamos a imaginar un piano con un teclado tan largo como nos sea necesario. E imaginaremos que pulsamos SÓLO las teclas blancas.

Primero pulsamos el primer Do que tenemos por la izquierda. A continuación pulsamos la siguiente tecla, que naturalmente será un Re. Luego saltamos una tecla y tocamos el Fa. Ahora saltamos dos teclas y tocamos el Si. Seguidamente saltamos tres teclas y tocamos el Fa, ya en la segunda octava. Y continuamos el proceso saltando cada vez una tecla más que la vez anterior. Como hemos supuesto que nuestro piano tiene tantas teclas como queramos supongamos que hemos llegado a tocar 7.000 teclas. Y hacemos dos preguntas:

1. ¿Cuántas teclas habremos tocado que corresponden a la nota Do?

2. ¿Habrá alguna nota que no haya sido pulsada en ningún momento?


Indaga y comprueba tus conjeturas:

Lo sentimos, el applet Geogebra no pudo iniciarse.
Por favor, comprueba que la plataforma Java 1.4.2 (o posterior) está instalada y activada.
(Pulsa aquí para instalar Java ahora)

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and activated. (click here to install Java now)

 

Solución al problema:

 

Más Desafíos matemáticos

Creado con GeoGebra por Manuel Sada (gracias a José Garay, a la RSME y a elpais.com). Abril 2011.